Pulse capacitor
A pulse capacitor is a capacitor designed primarily for applications with intermittent charges and/or discharges at high values of the charge/discharge current.

Pulse operation
Capacitors subjected to pulses with fast rise or fall times (high \(\frac{dU}{dt}\)) will be exposed to high current pulses \(i = C \times \frac{dU}{dt}\). In order not to overload the internal connections the current must be limited. The current limits for a specific type of capacitor are dependent upon:

- Amplitude and form of the pulse
- Rated voltage of the capacitor
- Capacitance

The current limits for a specific type of capacitor are dependent upon:

- Amplitude and form of the pulse
- Rated voltage of the capacitor
- Capacitance

The power dissipation in a capacitor is approximately:

\[P = 2\pi f \times C \times \tan\delta \times U_{\text{rms}}^2 \]
(1)

or

\[P = \tan\delta/(2\pi f \times C) \times I_{\text{rms}}^2 \]
(2)

\(\tan\delta\) = dissipation factor.

Typical values can be estimated from the diagram on page 15.

The power dissipation in a capacitor is approximately:

\[P = P_1 + P_2 + \ldots + P_n \]

\(\Delta T = (T_s - T_a) = P \times R_{\text{thha}} °C\)
(3)

Temperature increase between hot spot \((T_s)\) of the capacitor and ambient \((T_a)\).

\(R_{\text{thha}} = \text{Thermal resistance (°C/W)}\) between hot spot and ambient.

Maximum permissible hot spot temperature for polypropylene is +105 °C and maximum \(\Delta T = 10 °C\) at +85 °C \(T_a\).

For lower \(T_s\), a higher \(\Delta T\) can be allowed.

This is implemented in PCCAD software package below.

In order to make it easy to select pulse capacitors Evox Rifa has developed a software for Windows™ with the following main options:

- To get general technical information about pulse capacitors
- To get complete data sheets of all Evox Rifa pulse capacitors
- To select a Part Number and then get diagrams of ESR, DF, max \(I_{\text{rms}}\) and \(U_{\text{rms}}\) vs frequency and ambient temperature. This means that it is easy
 - To check if a certain capacitor is suitable for a certain application.
 - To make Fourier analysis of an arbitrary waveform.
 - To make print-outs of data files and diagrams from simulations.

This is normally all the information needed to select the right pulse capacitor.

Free download is available at www.kemet.com.
QUALITY TESTS AND REQUIREMENTS

The details are valid for all types of pulse capacitors unless specific remark is made in each detail specification.

All tests are made at +23°C unless otherwise specified.

<table>
<thead>
<tr>
<th>Test</th>
<th>IEC Publication</th>
<th>Procedure</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage proof</td>
<td>60384-1 clause 4.6</td>
<td>1.6 x U<sub>r</sub> after 60 s</td>
<td>The capacitors must withstand the voltage without breakdowns or flashovers and without decreased insulation resistance below the value in each detail specification. No visible damage.</td>
</tr>
<tr>
<td></td>
<td>2 x U<sub>r</sub> (min 400 VDC to case) after 60 s</td>
<td></td>
<td>As above</td>
</tr>
<tr>
<td>Vibration</td>
<td>60068-2-6 Test Fc</td>
<td>6 h with 10 – 500 Hz and 0.75 mm amplitude or 98 m/s² depending on frequency</td>
<td>No visible damage, tanδ ≤ 1.2 x stated value at 100 kHz ΔC/C ≤ ± 0.5%</td>
</tr>
<tr>
<td>Bump</td>
<td>60068-2-29 Test Eb</td>
<td>4000 bumps with 390m/s² mounted on PCB</td>
<td>ΔC/C ≤ ± 0.5% tanδ ≤ 1.2 x stated value at 100 kHz Insulation resistance: ≥ 100000 MΩ for C<sub>n</sub> ≤ 0.33 µF ≥ 30000 s for C<sub>n</sub> > 0.33 µF</td>
</tr>
<tr>
<td>Resistance to soldering heat</td>
<td>60068-2-20 Method 1A</td>
<td>Solder bath at + 260°C ± 5°C with screening</td>
<td>Immersion of the terminations into the solder bath shall be completed in a time not exceeding 1 s and the terminations shall remain immersed to the specified depth for 10 ± 1 s and then be withdrawn. ΔC/C ≤ ± 0.5% tanδ ≤ 1.2 x stated value at 100 kHz No visible damage.</td>
</tr>
<tr>
<td>Climatic sequence</td>
<td>60384-1 para 4:21</td>
<td>IEC 60068-2-2 dry heat 16 h IEC 60068-2-34 damp heat, one cycle, IEC 60068-2-1 Test Aa 2 h</td>
<td>Insulation resistance: ≥ 100000 MΩ for C<sub>n</sub> ≤ 0.33 µF ≥ 30000 s for C<sub>n</sub> > 0.33 µF ΔC/C ≤ ± 0.5% tanδ ≤ 1.2 x stated value at 100 kHz</td>
</tr>
<tr>
<td>Damp heat steady state</td>
<td>IEC 60068-2-3 Test Ca</td>
<td>+ 40°C and 90 – 95% RH</td>
<td>56 days No visible damage. Insulation resistance: ≥ 50000 MΩ for C<sub>n</sub> ≤ 0.33 µF ≥ 15000 s for C<sub>n</sub> > 0.33 µF ΔC/C ≤ ± 1% tanδ ≤ 1.2 x stated value at 100 kHz</td>
</tr>
<tr>
<td>Endurance, AC</td>
<td>60384-17 para 4.13</td>
<td>10000 pulses and with (2 x) dU/dt according to detail specification</td>
<td>No visible damage. ΔC/C ≤ ± 5% tanδ ≤ 1.5 x stated value at 100 kHz Insulation resistance: ≥ 100000 MΩ for C<sub>n</sub> ≤ 0.33 µF ≥ 30000 MΩ for C<sub>n</sub> > 0.33 µF</td>
</tr>
<tr>
<td>Charge and discharge</td>
<td>10000 pulses and with (2 x) dU/dt according to detail specification</td>
<td>tanδ (100 kHz) ≤ 2 x stated value (100 kHz) ΔC/C ≤ ± 0.5% Insulation resistance: ≥ 50000 MΩ for C<sub>n</sub> ≤ 0.33 µF ≥ 15000 s for C<sub>n</sub> > 0.33 µF</td>
<td></td>
</tr>
</tbody>
</table>

* Note: Generally, all small polypropylene capacitors are sensitive to the soldering heat due to the relatively low melting point of polypropylene material (160°C - 170°C). This is why the suitability of the soldering process should be checked before the use of especially PHE426 in 5 and 7.5 mm pitches. Consult KEMET for recommended temperature profiles.