PRODUCT CODE SYSTEM

The part number, comprising 14 digits, is formed as follows:

Digit 1 to 3	Series code.
Digit 4	d.c. rated voltage:
Digit 5	Pitch:
Digit 6 to 9	Digits 7 - 8 - 9 indicate the first three digits of Capacitance value and the 6th digit indicates the number of zeros that must be added to obtain the Rated Capacitance in pF.
Digit 10 to 11	Mechanical version and/or packaging (table 1)
Digit 12	Identifies the dimensions and electrical characteristics.
Digit 13	Internal use
Digit 14	Capacitance tolerance:

- J=5%
- K=10%
- M=20%

Table 1 (for more detailed information, please refer to page 14).

<table>
<thead>
<tr>
<th>Standard packaging style</th>
<th>Lead length (mm)</th>
<th>Ordering code (Digit 10 to 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMMO-PACK</td>
<td></td>
<td>DQ</td>
</tr>
<tr>
<td>Reel Ø 355 mm</td>
<td></td>
<td>CK</td>
</tr>
<tr>
<td>Loose, short leads</td>
<td>4 ±1.5</td>
<td>AA</td>
</tr>
<tr>
<td>Loose, long leads</td>
<td>17 ±1/2</td>
<td>Z3</td>
</tr>
</tbody>
</table>

GENERAL TECHNICAL DATA

Dielectric: polyester film (polyethylene terephthalate).

Plates: aluminium layer deposited by evaporation under vacuum.

Winding: non-inductive type.

Leads: tinned wire.

Protection: plastic case, thermostetting resin filled. Box material is solvent resistant and flame retardant according to UL94.

Marking: Capacitance, tolerance, D.C. rated voltage.

Climatic category: 55/105/56 IEC 60068-1

Operating temperature range: -55 to +105°C

Related documents: IEC 60384-2

R82

MKT Series

D.C. MULTIPURPOSE APPLICATIONS

Typical applications: by-passing, blocking, coupling, decoupling, timing, oscillator circuits.

For inverter applications please refer to RSB Series.

PRODUCT CODE: R82

p = 5mm

<table>
<thead>
<tr>
<th>Pitch (mm)</th>
<th>Box thickness (B)</th>
<th>Maximum dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 <4.5</td>
<td>B +0.1</td>
<td>H +0.1 L +0.2</td>
</tr>
<tr>
<td>5.0 ≥4.5</td>
<td>B +0.1</td>
<td>H +0.1 L +0.3</td>
</tr>
</tbody>
</table>

Winding scheme

- single sided metallized polyester film

Table 1

<table>
<thead>
<tr>
<th>Standard packaging style</th>
<th>Lead length (mm)</th>
<th>Ordering code (Digit 10 to 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMMO-PACK</td>
<td></td>
<td>DQ</td>
</tr>
<tr>
<td>Reel Ø 355 mm</td>
<td></td>
<td>CK</td>
</tr>
<tr>
<td>Loose, short leads</td>
<td>4 ±1.5</td>
<td>AA</td>
</tr>
<tr>
<td>Loose, long leads</td>
<td>17 ±1/2</td>
<td>Z3</td>
</tr>
</tbody>
</table>
WOUND version

The pulse characteristic K_0 depends on the voltage.

STACKED version

Mechanical version and packaging (Table 1)

Tolerance: J ($\pm 5\%$); K ($\pm 10\%$); M ($\pm 20\%$)

<table>
<thead>
<tr>
<th>Rated Cap.</th>
<th>50Vdc/30Vac Std dimensions</th>
<th>Max dv/dt (V/µs)</th>
<th>Max K_0 (V/µs)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 µF</td>
<td>2.5 6.5 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC1100--5--</td>
</tr>
<tr>
<td>0.15 µF</td>
<td>2.5 6.5 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC1150--5--</td>
</tr>
<tr>
<td>0.22 µF</td>
<td>2.5 6.5 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC1220--5--</td>
</tr>
<tr>
<td>0.33 µF</td>
<td>3.5 7.5 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC1330--5--</td>
</tr>
<tr>
<td>0.47 µF</td>
<td>3.5 7.5 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC1470--5--</td>
</tr>
<tr>
<td>0.68 µF</td>
<td>4.5 9.5 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC1680--5--</td>
</tr>
<tr>
<td>1.0 µF</td>
<td>5.0 10.0 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC1800--5--</td>
</tr>
<tr>
<td>1.5 µF</td>
<td>6.0 11.0 7.2 5.0</td>
<td>160</td>
<td>20 E3</td>
<td>R82EC2100--5--</td>
</tr>
</tbody>
</table>

Reduced Sizes

<table>
<thead>
<tr>
<th>Rated Cap.</th>
<th>250Vdc/140Vac Std dimensions</th>
<th>Max dv/dt (V/µs)</th>
<th>Max K_0 (V/µs)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.022 µF</td>
<td>2.5 6.5 7.2 5.0</td>
<td>130</td>
<td>65 E3</td>
<td>R82IC2220--6--</td>
</tr>
<tr>
<td>0.047 µF</td>
<td>3.5 7.5 7.2 5.0</td>
<td>130</td>
<td>65 E3</td>
<td>R82IC2470--6--</td>
</tr>
<tr>
<td>0.068 µF</td>
<td>4.5 9.5 7.2 5.0</td>
<td>130</td>
<td>65 E3</td>
<td>R82IC2680--6--</td>
</tr>
<tr>
<td>0.10 µF</td>
<td>5.0 10.0 7.2 5.0</td>
<td>130</td>
<td>65 E3</td>
<td>R82IC3100--6--</td>
</tr>
<tr>
<td>0.15 µF</td>
<td>6.0 11.0 7.2 5.0</td>
<td>130</td>
<td>65 E3</td>
<td>R82IC3150--6--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated Cap.</th>
<th>400Vdc/200Vac Std dimensions</th>
<th>Max dv/dt (V/µs)</th>
<th>Max K_0 (V/µs)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015 µF</td>
<td>2.5 6.5 7.2 5.0</td>
<td>200</td>
<td>160 E3</td>
<td>R82MC1680--6--</td>
</tr>
<tr>
<td>0.010 µF</td>
<td>2.5 6.5 7.2 5.0</td>
<td>200</td>
<td>160 E3</td>
<td>R82MC1700--5--</td>
</tr>
<tr>
<td>0.015 µF</td>
<td>2.5 6.5 7.2 5.0</td>
<td>200</td>
<td>160 E3</td>
<td>R82MC2150--6--</td>
</tr>
<tr>
<td>0.033 µF</td>
<td>3.5 7.5 7.2 5.0</td>
<td>200</td>
<td>160 E3</td>
<td>R82MC2330--6--</td>
</tr>
<tr>
<td>0.047 µF</td>
<td>4.5 9.5 7.2 5.0</td>
<td>200</td>
<td>160 E3</td>
<td>R82MC2470--6--</td>
</tr>
<tr>
<td>0.068 µF</td>
<td>6.0 11.0 7.2 5.0</td>
<td>200</td>
<td>160 E3</td>
<td>R82MC2680--6--</td>
</tr>
</tbody>
</table>

All dimensions in mm.

Note: If the working voltage (V) is lower than the rated voltage (V_R), the capacitor may work at higher dv/dt. In this case the maximum value allowed is obtained multiplying the above value (see table dv/dt) with the ratio V/V_R.

The pulse characteristic K_0 depends on the voltage waveform and in any case it cannot overcome the value given in the above table.
METALLIZED POLYESTER FILM CAPACITOR
D.C. MULTIPURPOSE APPLICATIONS

p = 5 mm
PRODUCT CODE: R82

ELECTRICAL CHARACTERISTICS

Rated voltage (V_{R}):
- 50 Vdc
- 63 Vdc
- 100 Vdc
- 250 Vdc
- 400 Vdc

Rated temperature (T_{R}): +85°C

Temperature derated voltage:
For temperatures between +85°C and +105°C a decreasing factor of 1.25% per degree °C on the rated voltage V_{R} (d.c. and a.c.) has to be applied.

Capacitance range: 1000pF to 4.7µF

Capacitance values: E6 series (IEC 60063 Norm).

Capacitance tolerances (measured at 1 kHz):
- ±5% (J); ±10% (K); ±20% (M).

Total self-inductance (L):
≈7nH max 1 nH per 1 mm lead and capacitor length.

Dissipation factor (DF):
tgδ 10^{-4} at +25°C ±5°C

<table>
<thead>
<tr>
<th>kHz</th>
<th>C ≤ 0.1µF</th>
<th>C > 0.1µF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤ 80</td>
<td>≤ 80</td>
</tr>
<tr>
<td>10</td>
<td>≤ 120</td>
<td>≤ 120</td>
</tr>
<tr>
<td>100</td>
<td>≤ 250</td>
<td>≥ 100</td>
</tr>
</tbody>
</table>

Insulation resistance:

Test conditions
- Temperature: +25°C±5°C
- Voltage charge time: 1 min

Voltage charge:
- 50 Vdc for V_{R} < 100 Vdc
- 100 Vdc for V_{R} ≥ 100 Vdc

Performance

For V_{R} ≤ 100 Vdc
- ≥15000 MΩ for C ≤ 0.33µF
- ≥ 5000 s for C > 0.33µF and ≤1µF
- ≥ 1000 s for C > 1µF

For V_{R} > 100 Vdc
- ≥30000 MΩ

*Typical value

Test voltage between terminations:
1.4xV_{R} applied for 2 s at +25°C±5°C.

TEST METHOD AND PERFORMANCE

Damp heat, steady state:

Test conditions
- Temperature: +40°C±2°C
- Relative humidity (RH): 93% ±2%
- Test duration: 56 days

Performance
- Capacitance change |$\Delta C/C$|: ≤ 5%
- DF change ($\Delta \text{tgδ}$):
 - ≤ 50$x10^{-4}$ at 1kHz
 - ≤ 20$x10^{-4}$ at 1kHz
- Insulation resistance:
 - ≥ 50% of initial limit.

Endurance:

Test conditions
- Temperature: +105°C ±2°C
- Voltage applied: 1.25xV_{c}

Performance
- Capacitance change |$\Delta C/C$|: ≤ 5%
- DF change ($\Delta \text{tgδ}$):
 - ≤ 30$x10^{-4}$ at 10kHz for C ≤ 1µF
 - ≤ 20$x10^{-4}$ at 1kHz for C > 1µF
- Insulation resistance:
 - ≥ 50% of initial limit.

Resistance to soldering heat:

Test conditions
- Solder bath temperature: +260°C±5°C
- Dipping time (with heat screen): 10 s ±1 s

Performance
- Capacitance change |$\Delta C/C$|: ≤ 2%
- DF change ($\Delta \text{tgδ}$):
 - ≤ 20$x10^{-4}$ at 1kHz for C > 1µF
- Insulation resistance:
 - ≥ initial limit.

Long term stability (after two years):

Storage: standard environmental conditions (see page 12).

Performance
- Capacitance change |$\Delta C/C$|: ≤ 3% for C ≤ 0.1µF
 - ≤ 2% for C > 0.1µF

RELIABILITY:

Reference MIL HDB 217

Application conditions:
- Temperature: +40°C±2°C
- Voltage: 0.5xV_{R}
- Failure rate: ≤ 1 FIT

(1 FIT = 1x10^8 failures/components x h)

Failure criteria:
(according to DIN 44122)
- Short or open circuit
- Capacitance change |$\Delta C/C$|: ≥ 10%
- DF change ($\Delta \text{tgδ}$):
 - > 2 x initial limit.
- Insulation resistance:
 - < 0.005 x initial limit.
MAX. VOLTAGE (V_{r.m.s.}) VERSUS FREQUENCY (sinusoidal wave-form / \text{Th} \leq 40^\circ\text{C})
MAX. CURRENT (Ir.m.s.) VERSUS FREQUENCY (sinusoidal wave-form / Th ≤ 40°C)

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute – and we specifically disclaim – any warranty concerning suitability for a specific customer application or use. This information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.